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zoylglycine as described above.8 No detectable hydrolysis of 
the methyl ester occurred with CPA and phenylalanine. By 
comparison with the 18O exchange rate, it could thus be de­
termined that &CH3OH/&H2O is ' e s s t n a n 0-0003. 

Thus, the enzyme cannot incorporate methanol in the 
transition state of the reaction (run in either direction) for 
either ester or peptide substrates.9 This suggests that re­
moval of both protons of water is required in the transition 
state for hydrolysis. 

From these data all together, we suggest the mechanism 
shown in Scheme I for the hydrolysis of peptide substrates. 
The glutamate carboxylate acts as a general base to deliver 
nucleophilic water to the carbonyl, but if this were instead 
methanol then the first step would simply reverse. Only a 
second deprotonation could drive the reaction in the for­
ward direction, and this proton transfer might well involve 
the tyrosine hydroxyl10 as a bridge between the OH and the 
N as we have suggested for our model system.3 

Much controversy" has surrounded the question of 
whether Arg-145 or Zn2+ is the binding site for substrate 
carboxylate. Our mechanism indicates that both are true, 
the Zn2+ binding the carboxylate of one hydrolysis product 
which is thus the substrate for the reverse reaction. In gen­
eral one would expect that an exopeptidase should have two 
alternate binding sites, separated by a distance correspond­
ing to one residue in the substrate, as in this mechanism. 
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Benzocyclobutadiene 

Sir: 

We wish to report the direct spectroscopic observation of 
benzocyclobutadiene. Benzocyclobutadiene has been the 
subject of an extensive literature.1 A variety of methods for 
generating benzocyclobutadiene as a reactive intermediate 
is known, but direct observation of this intermediate has not 
been possible.1-5 

We have developed a method for generating clean sam­
ples of benzocyclobutadiene matrix isolated in argon. The 
apparatus is shown in Figure 1. m-l,2-Diiodobenzocyclo-
butene is heated to 65 0C at 1O-6 mm by the first heater to 
provide a sufficient rate of sublimation. The diiodide vapor 
is passed over zinc powder heated to 230 0C by the second 
heater. The vapor is then passed through a zone cooled by 
acetone evaporation. Small quantities of two products, ben­
zocyclobutadiene dimer and ?ran.r-diiodide, deposit in the 
cooled region. The matrix deposited on the cesium iodide 
plate is free of both dimer and trans-dnodidt. After deposi­
tion, the vacuum shroud is rotated 90° for infrared spectro­
scopic observation.6 The same procedure is used for ultravi­
olet spectroscopic observation except that a sapphire plate is 
used.6 The infrared spectrum of benzocyclobutadiene is 
shown in Figure 2 and the ultraviolet spectrum in Figure 3. 
The species in the matrix is identified as benzocyclobuta­
diene by the thermal dimerization above 75 K to the known 
benzocyclobutadiene dimer. The disappearance of the in­
frared and ultraviolet absorption bands due to benzocyclo­
butadiene and the concurrent appearance of the absorption 
bands due to the dimer establish the identity of the matrix 
isolated species as benzocyclobutadiene. In the infrared ex­
periment, the dimer was washed from the window and fur­
ther characterized by comparison of mass spectra, ultravio­
let spectra, and thin layer chromatographic behavior in five 
solvent systems with authentic benzocyclobutadiene dimer. 
Attempts to degrade benzocyclobutadiene to benzyne and 
acetylene by ultraviolet irradiation were unsuccessful. Ben­
zocyclobutadiene is quite stable to irradiation in an argon 
matrix. 
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The most intense band (737 cm-1) in the infrared spec­
trum of benzocyclobutadiene is the deformation mode due 
to the four carbon-hydrogen bonds in a 1,2-disubstituted 
benzene. The band at 700 cm -1 is probably one of the de­
formation modes of the olefinic carbon-hydrogen bonds (cf. 
650 and 570 cm -1 for the in-plane and out-of-plane modes 
for cyclobutadiene7'8). The ultraviolet spectrum of benzocy­
clobutadiene (Xmax

Ar 243, 246.5, 256, 264, 270, 281.5, and 
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Figure 1. Apparatus for thermal generation and spectroscopic observa­
tion of benzocyclobutadiene. The system is evacuated to 1O-6 mm dur­
ing use. 

Figure 2. Infrared spectrum of benzocyclobutadiene matrix isolated in 
argon at 8 K. Bands marked X were in the spectrum of the cesium io­
dide plate before deposition. 

250 300 nm 
Figure 3. (A) Ultraviolet spectrum of benzocyclobutadiene matrix iso­
lated in argon at 8 K. (B) Ultraviolet spectrum of authentic benzocy­
clobutadiene dimer in 95% ethanol solution. (C) Ultraviolet spectrum 
of sample A after warming above 75 K. (D) Ultraviolet spectrum of 
the product recovered from the cesium iodide window after warming 
the sample shown in Figure 2 to room temperature. Vertical axis is op­
tical density. The relative positions of A, B, C, and D are arbitrary and 
do not show relative optical densities. 

289 nm) shows considerable structure over a broad range. 
The rapidly rising baseline in the ultraviolet spectrum is due 
to light scattering by the argon. On warming, the benzocy-
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clobutadiene dimer absorption appears (Figure 3). In this 
process, the argon is pumped off, and light scattering is less 
serious. 

Irradiation of m-diiodide matrix isolated in argon at 8 K 
gives two primary products, /ra/«-diiodide (major) and 
benzocyclobutadiene (minor). Similar irradiation of the 
/raws-diiodide gives only m-diiodide as a primary product. 
When the irradiations are monitored by ESR a free radical 
(presumably the 2-iodobenzocyclobutyl radical) signal is 
observed. 

^ Zn 230° 

+ ZnI, 

It is instructive to note that the zinc-induced elimination 
is much more facile with the cis- than with the trans-di-
iodide. This observation suggests the possibility of a cyclic 
elimination. 
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Hydrozirconation. V. 7,5-LJnsaturated Aldehydes and 
Halides from 1,3-Dienes via Organozirconium(IV) 
Intermediates 

Sir: 

The hydride (r/5-C5H5)2Zr(H)Cl (1) can be used to pre­
pare reactive precursors of a variety of alkyl or alkenyl or­
ganic compounds from olefins or acetylenes, respectively. 
The overall mode of addition of 1 to these unsaturated hy­
drocarbons in many ways parallels reactions known for sev­
eral main group or transition metal hydrides. We find now, 
however, that the course of addition of 1 to 1,3-dienes is sig­
nificantly different from that observed for these other 
classes of hydrides. In contrast to boron1 or aluminum2 hy­
drides which often doubly metalate 1,3-dienes or give a 
mixture of products, or to most transition metal hydrides 
which add 1,4 or 1,2 to yield allylic complexes,3'4 1 reacts 
with a variety of 1,3-dienes via 1,2-addition to the sterically 
less hindered olefinic unit of the substrate to give 7,5-unsat-
urated (homoallylic) complexes in high yield (80-90%, re­
action 1). These compounds, in turn, can be used to prepare 
desirable organic products, 7,5-unsaturated aldehydes or 
halides, under mild conditions. 

1,3-Dienes react more slowly with 1 than do terminal ole­
fins (relative rate ca. 1:50); the 7,5-unsaturated zirconium 
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